Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Microbiol Spectr ; 11(3): e0373122, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2314896

ABSTRACT

Rapid diagnostic tests (RDTs) that detect antigen indicative of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection can help in making quick health care decisions and regularly monitoring groups at risk of infection. With many RDT products entering the market, it is important to rapidly evaluate their relative performance. Comparison of clinical evaluation study results is challenged by protocol design variations and study populations. Laboratory assays were developed to quantify nucleocapsid (N) and spike (S) SARS-CoV-2 antigens. Quantification of the two antigens in nasal eluates confirmed higher abundance of N than S antigen. The median concentration of N antigen was 10 times greater than S per genome equivalent. The N antigen assay was used in combination with quantitative reverse transcription (RT)-PCR to qualify a panel composed of recombinant antigens, inactivated virus, and clinical specimen pools. This benchmarking panel was applied to evaluate the analytical performance of the SD Biosensor Standard Q COVID-19 antigen (Ag) test, Abbott Panbio COVID-19 Ag rapid test, Abbott BinaxNOW COVID-19 Ag test, and the LumiraDx SARS-CoV-2 Ag test. The four tests displayed different sensitivities toward the different panel members, but all performed best with the clinical specimen pool. The concentration for a 90% probability of detection across the four tests ranged from 21 to 102 pg/mL of N antigen in the extracted sample. Benchmarking panels provide a quick way to verify the baseline performance of a diagnostic and enable direct comparisons between diagnostic tests. IMPORTANCE This study reports the results for severe acute respiratory syndrome coronavirus-2 (SARS-COV-2) nucleocapsid (N) and spike (S) antigen quantification assays and their performance against clinical reverse transcription (RT)-PCR results, thus describing an open-access quantification method for two important SARS-CoV-2 protein analytes. Characterized N antigen panels were used to evaluate the limits of detection of four different rapid tests for SARS-CoV-2 against multiple sources of nucleocapsid antigen, demonstrating proof-of-concept materials and methodology to evaluate SARS-CoV-2 rapid antigen detection tests. Quantification of N antigen was used to characterize the relationship between viral count and antigen concentration among clinical samples and panel members of both clinical sample and viral culture origin. This contributes to a deeper understanding of protein antigen and molecular analytes and presents analytical methods complementary to clinical evaluation for characterizing the performance of both laboratory-based and point-of-care rapid diagnostics for SARS-CoV-2.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Indicators and Reagents , Benchmarking , Diagnostic Tests, Routine , COVID-19 Testing
2.
J Infect Dis ; 2022 05 20.
Article in English | MEDLINE | ID: covidwho-2289156

ABSTRACT

BACKGROUND: Point-of-care and decentralized testing for SARS-CoV-2 is critical to inform public health responses. Performance evaluations in priority use cases such as contact tracing can highlight trade-offs in test selection and testing strategies. METHODS: A prospective diagnostic accuracy study was conducted among close contacts of COVID-19 cases in Brazil. Two anterior nares swabs (ANS), a nasopharyngeal swab (NPS), and saliva were collected at all visits. Vaccination history and symptoms were assessed. Household contacts were followed longitudinally. Three rapid antigen tests and one molecular method were evaluated for usability and performance against reference RT-PCR on NPS. RESULTS: Fifty index cases and 214 contacts (64 household) were enrolled. Sixty-five contacts were RT-PCR positive during at least one visit. Vaccination did not influence viral load. Gamma variants were most prevalent; Delta emerged increasingly during implementation. Overall sensitivity of evaluated tests ranged from 33%-76%. Performance was higher among symptomatic cases and cases with Ct < 34 and lower among oligo/asymptomatic cases. Assuming a 24-hour time-to-result for RT-PCR, the cumulative sensitivity of an ANS rapid antigen test was >70% and almost 90% after four days. CONCLUSIONS: The near immediate time-to-result for antigen tests significantly offsets lower analytical sensitivity in settings where RT-PCR results are delayed or unavailable.

3.
Int J Infect Dis ; 117: 287-294, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1670581

ABSTRACT

OBJECTIVES: This study assesses and compares the performance of different swab types and specimen collection sites for SARS-CoV-2 testing, to reference standard real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and viral culture. METHODS: Symptomatic adults with COVID-19 who visited routine COVID-19 testing sites used spun polyester and FLOQSwabs to self-collect specimens from the anterior nares and tongue. We evaluated the self-collected specimen from anterior nares and tongue swabs for the nucleocapsid (N) or spike (S) antigen of SARS-CoV-2 by RT-PCR and then compared these results with results from RT-PCR and viral cultures from nurse-collected nasopharyngeal swabs. RESULTS: Diagnostic sensitivity was highest for RT-PCR testing conducted using specimens from the anterior nares collected on FLOQSwabs (84%; 95% CI 68-94%) and spun polyester swabs (82%; 95% CI 66-92%), compared to RT-PCR tests conducted using specimens from nasopharyngeal swabs. Relative to viral culture from nasopharyngeal swabs, diagnostic sensitivities were higher for RT-PCR and antigen testing of anterior nares swabs (91-100%) than that of tongue swabs (18-81%). Antigen testing of anterior nares swabs had higher sensitivities against viral culture (91%) than against nasopharyngeal RT-PCR (38-70%). All investigational tests had high specificity compared with nasopharyngeal RT-PCR. Spun polyester swabs are equally effective as FLOQSwabs for anterior nasal RT-PCR testing. CONCLUSIONS: We found that anterior nares specimens were more sensitive than tongue swab specimens or antigen testing for detecting SARS-CoV-2 by RT-PCR. Thus, self-collected anterior nares specimens may represent an alternative method for diagnostic SARS-CoV-2 testing in some settings.


Subject(s)
COVID-19 , Nucleic Acids , Adult , COVID-19/diagnosis , COVID-19 Testing , Humans , Nasopharynx , Nucleocapsid/genetics , Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity , Specimen Handling/methods , Tongue
4.
ACS Omega ; 6(31): 20139-20148, 2021 Aug 10.
Article in English | MEDLINE | ID: covidwho-1349635

ABSTRACT

Severe acute respiratory coronavirus-2 (SARS-CoV-2) is a novel viral pathogen and therefore a challenge to accurately diagnose infection. Asymptomatic cases are common and so it is difficult to accurately identify infected cases to support surveillance and case detection. Diagnostic test developers are working to meet the global demand for accurate and rapid diagnostic tests to support disease management. However, the focus of many of these has been on molecular diagnostic tests, and more recently serologic tests, for use in primarily high-income countries. Low- and middle-income countries typically have very limited access to molecular diagnostic testing due to fewer resources. Serologic testing is an inappropriate surrogate as the early stages of infection are not detected and misdiagnosis will promote continued transmission. Detection of infection via direct antigen testing may allow for earlier diagnosis provided such a method is sensitive. Leading SARS-CoV-2 biomarkers include spike protein, nucleocapsid protein, envelope protein, and membrane protein. This research focuses on antibodies to SARS-CoV-2 spike protein due to the number of monoclonal antibodies that have been developed for therapeutic research but also have potential diagnostic value. In this study, we assessed the performance of antibodies to the spike glycoprotein, acquired from both commercial and private groups in multiplexed liquid immunoassays, with concurrent testing via a half-strip lateral flow assays (LFA) to indicate antibodies with potential in LFA development. These processes allow for the selection of pairs of high-affinity antispike antibodies that are suitable for liquid immunoassays and LFA, some of which with sensitivity into the low picogram range with the liquid immunoassay formats with no cross-reactivity to other coronavirus S antigens. Discrepancies in optimal ranking were observed with the top pairs used in the liquid and LFA formats. These findings can support the development of SARS-CoV-2 LFAs and diagnostic tools.

SELECTION OF CITATIONS
SEARCH DETAIL